

Weekly Cat Report

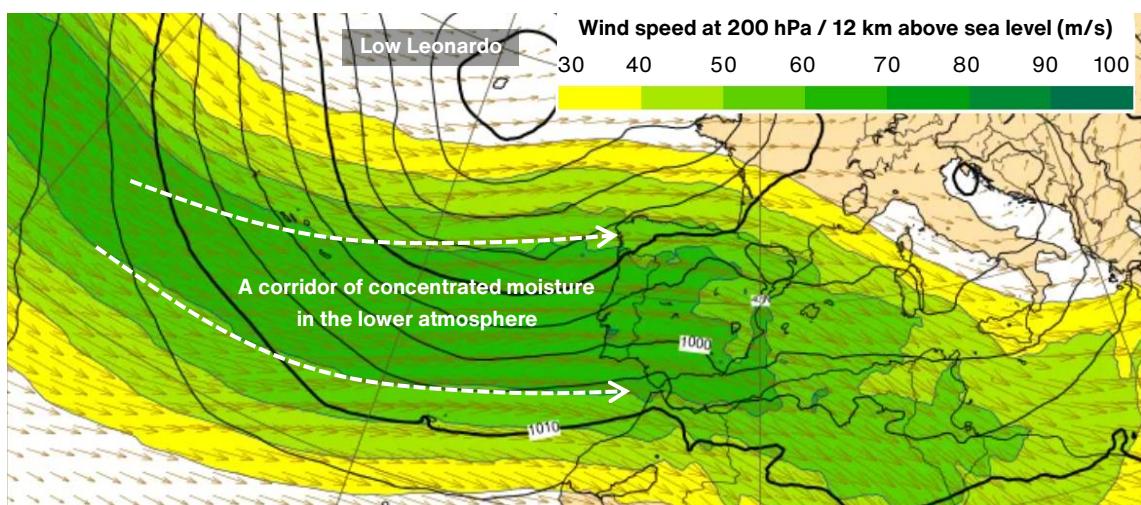
Review of Global Catastrophe Activity

February 13, 2026

Executive Summary

Event	Affected Region(s)	Fatalities	Economic Loss Estimate (\$)	Page
WS & Flooding (Update)	Portugal, Spain, Morocco	18	Billions	3
Cyclone Mitchell	Australia	0	Millions	8
Cyclone Gezani	Madagascar, Mozambique	36	10s of millions	8
Flooding	Australia	0	Millions	8
Tropical Storm Penha	Philippines	12	N/A	8
Flooding	Colombia	44	10s of millions	8
Winter Weather	Italy, France	11	N/A	9
Winter Weather	United States	0	10s of millions	9
Flooding	Syria	3	N/A	9
Flooding & Landslide	Brazil	10	Millions	9

Explore the supplementary graphics in the [Appendices](#). See [Additional Report Details](#) for more about loss estimates and data collecting. Explore more or sign up to receive Cat Reports [here](#).


Portugal, Spain, Morocco: Windstorm & Flooding (Update)

Overview

Between late January and early February, a series of Atlantic windstorms hit Southwestern Europe, especially Portugal and Spain, with powerful winds and heavy rainfall. The most severe was Storm Kristin, which caused major material damage and widespread disruption, and may end up being one of the most expensive (re)insurance loss events ever recorded in Portugal. Aggregated economic and insured losses are estimated to exceed one billion euros.

Meteorological Recap

A persistent and intensified North Atlantic jet stream steered multiple deep lows toward the Iberian Peninsula with limited recovery time between successive storms. Since January 18, eight consecutive lows have impacted the region with strong winds and sustained rainfall. These include Storms Harry (Jan 18-20), Kristin (Jan 22), Ingrid / Leonie (Jan 23), Chandra / Norma (Jan 27), Kristin (Jan 28), Querida & Romina (Feb 2), Leonardo / Stephie (Feb 4-7), and Marta (Feb 8).



Strong jet stream over Southwestern Europe on February 5. Source: ECMWF

The strongest wind impacts were associated with **Storm Kristin** that underwent rapid intensification consistent with explosive cyclogenesis ("bomb cyclone"), with a rare sting-jet structure, a mesoscale descending wind feature capable of producing locally extreme surface gusts. The sting-jet signature has previously been observed during Storm Leslie (2018) and Storm Xola (2009).

Peak observed gusts reached **208.8 kph (129.7 mph)** in the Coimbra district on January 28. If verified by the national meteorological agency (IPMA), Kristin may represent the strongest storm recorded in Portugal since systematic national observations began, exceeding the previous record of 176.4 kph (109.6 mph) held by Storm Leslie. The storm also produced coastal waves up to 14 meters (46 ft), heavy rainfall and snowfall, locally the heaviest in two decades, resulting in rapid river level rises and flash flooding due to already saturated soil.

Notably, multiple Atlantic low-pressure systems have brought heavy rains to much of Spain, causing above-average rainfall (as seen below) and ongoing flood risks.

The most intense rainfall, associated with low-pressure system **Leonardo** (Stephie by FU Berlin), occurred on February 4. Grazalema meteorological station in Cádiz Province recorded **581.5 mm (22.9 in)** of rain, breaking a station all-time daily record. Since the beginning of the year, total rainfall at this station has reached **2,500 mm (98.4 in)**, already surpassing the whole year maximum.

Location (Province)	Rainfall accumulation on Feb 4 (mm / in)
Grazalema (Cádiz)	581.5 / 22.9
Alpandeire (Málaga)	205.0 / 8.1
Border Courts (Málaga)	174.8 / 6.9
Jimena de la Frontera (Cádiz)	126.6 / 5.0
Gaucín (Málaga)	125.8 / 5.0

Event Details

Portugal

Storm Kristin caused severe wind damage in several districts along Portugal's west-central coast, including Coimbra, Leiria, Santarém, and Lisboa. The Portuguese government declared a state of calamity from January 29 to February 8 for the hardest-hit areas. Reported damage included extensive residential and commercial property damage, including structural roof and façade failures, damaged vehicles, as well as forest destruction, notably Leiria National Forest.

National grid operator (E-REDES) noted an unprecedented impact, with around one million customers losing power, 6,300 km (3,900 miles) of electricity networks affected, and over 5,800 poles damaged.

Source: Journal of Leiria

Extensive damage to electricity network across Portugal. Source: E-REDES

In addition to powerful winds, several storm systems caused prolonged heavy rainfall, resulting in river flooding and added strain on reservoirs. The following areas were affected by floods: Aveiro, Beja, Braga, Coimbra, Evora, Faro, Santarem, Setubal, Lisboa, Leiria, Portalegre, Porto, Viana do Castelo, and Viseu, as illustrated on the map below.

Since January 28, at least 13 fatalities and nearly 1,100 injuries have occurred due to severe weather incidents.

Maximum Flood Extent Monitored by Copernicus (as of February 10)

Southern Spain

Western Portugal

Spain

In Spain, Storm Kristin left one fatality and approximately 170,000 customers experienced power outages in Andalusia.

Significant impacts have resulted from widespread flooding caused by multiple waves of rainfall, including Storm Leonardo, particularly in southern Spain since early February. The affected regions include Andalusia, Extremadura, Galicia, Castile and Leon, Castilla-La Mancha, and Madrid, with approximately 11,000 individuals displaced. This trend is expected to persist into mid-February, as prevailing meteorological conditions continue to favor the movement of storm systems across the Iberian Peninsula and southern Europe.

Elsewhere

Storms affected also other areas, though less severely. In Morocco, Storm Leonardo caused heavy rain and flash floods that displaced over 150,000 people. Storm Marta triggered further flooding and landslides, heavily impacting Tangier, Salé, and Casablanca. At least four fatalities and damage to infrastructure and about 60 homes were reported.

Financial Loss Estimate

Portugal

Early government evaluations suggest Storm Kristin's direct economic losses may surpass €4 billion (\$4.7 billion), about 1.5% of the Portuguese GDP. The Confederation of Farmers of Portugal reports that agriculture and forestry alone lost €775 million (\$920 million). The Portuguese government responded with emergency measures, offering grants up to €10,000 (\$11,900) for repairs to main residences and for agricultural or forestry damages. These grants are available even if there is no relevant insurance, provided the CCDR and local authorities inspect the losses.

Initial market data, government estimates, and past loss records indicate insured losses could reach several hundred million euros, possibly around €500 million (\$590 million). The most affected categories include residential property, commercial and industrial assets, utilities and energy infrastructure, motor insurance, and other minor lines.

Tens of thousands of claims have already been filed with Portugal's three largest insurers, most of which are linked to Storm Kristin. Consequently, Kristin is likely to **become one of the most expensive (re)insurance loss events** ever recorded in Portugal.

The costliest insured-loss events in Portugal. Source: Aon Catastrophe Insight

Date	Event	Nominal Insured Loss (€ million)	Inflated Insured Loss (€ million)
Oct 2017	Wildfires	230	290
Feb 2010	Madeira Floods	140	220
Feb/Mar 2010	Windstorm Xynthia	100	170
Jan 2013	Windstorm Gong	100	160

Spain

Spain expects additional hundreds of millions of euros in economic and insured losses from widespread flooding, mainly due to Storms Leonardo and Marta that brought significant amount of rain. Spanish Association of Insurance Entities for Combined Agricultural Insurance (Agroseguro)

estimates that the series of storms in recent weeks affected over 40,000 hectares (98,800 acres) of farmland, resulting in insured losses provisionally estimated at €35 million (\$42 million). Economic losses in the agricultural sector alone are estimated to exceed €500 million (\$590 million). The initial government assessment suggests that total economic losses could amount to €1.2 billion (\$1.4 billion).

Please note that all loss estimates remain subject to revision as damage assessments continue across the impacted area.

Global Disasters: In Brief

Australia: Cyclone Mitchell

Cyclone Mitchell crossed the Western Australian coast near Shark Bay overnight on February 9. Even after weakening below cyclone strength, the storm still brought heavy rain, damaging winds, and flooding to coastal and inland areas. Peak wind gusts reached up to 155 kph (96 mph), with 107 kph (67 mph) recorded at Carnarvon and 85 kph (55 mph) at Shark Bay. Rainfall totals included 132 mm (5.2 in) at Gascoyne Junction, 104 mm (4.1 in) at Shark Bay, and 122 mm (4.8 in) at Mount Winifred. The storm caused thousands of power outages, with nearly 2,000 properties affected during the storm's peak in the Exmouth area.

Madagascar, Mozambique: Cyclone Gezani

Cyclone Gezani struck near Toamasina in east-central Madagascar on February 10, bringing sustained winds of up to 175 kph (109 mph), equivalent to a high-end Category 2 hurricane on the Saffir-Simpson Scale. By February 12, the local disaster authority (BNGRC) had reported 36 deaths, six missing persons, 374 injuries, and more than 257,000 people impacted overall. Powerful winds and severe flooding damaged over 37,200 homes and destroyed nearly 18,000 in 18 districts across the Atsinanana, Analanjirofo, Itasy, and Alaotra Mangoro regions.

In the coming days, Gezani is forecasted to approach or potentially strike the Inhambane Province in Mozambique. Peak sustained winds are expected to reach up 200 kph (125 mph) by February 14 upon the storm's closest approach, according to the Joint Typhoon Warning Center (JTWC). Further impacts will be covered in the next Weekly Cat Report.

Australia: Flooding

Nearly early 100 mm (4 in) of rain fell on Alice Springs over about a 3-hour period, turning the normally dry Todd River into a torrent and triggering severe flash flooding. This left several people stranded on car roofs, submerged vehicles, uprooted trees, and key routes cut off, including large sections near the Stuart and Plenty highways. Damage assessments are ongoing, but losses are expected to be in the low millions of USD.

Philippines: Tropical Storm Penha

Tropical Storm Penha (Basyang) crossed the south-central Philippines between February 5-7. The storm killed at least 12 people and affected 650,000 across 6 regions, mainly through rain-induced landslides and flooding. More than 86,000 people were displaced, including nearly 60,000 placed in evacuation centers. Multiple landfalls over Mindanao and the Visayas, along with moderate to heavy rain, caused widespread inundation, infrastructure damage, impassable roads, and major transport disruptions, including 32 cancelled flights.

Colombia: Flooding

Colombia declared a state of emergency due to severe flooding triggered by persistent heavy rainfall over the last two weeks. Colombia's disaster relief agency has reported 44 fatalities and thousands of families displaced in the northern cattle belt region. Authorities also reported 12,000 homes damaged, over 4,000 more destroyed, and approximately 72,000 families affected in 104 municipalities. At least 1,200 cattle have died, according to the cattle ranchers' association.

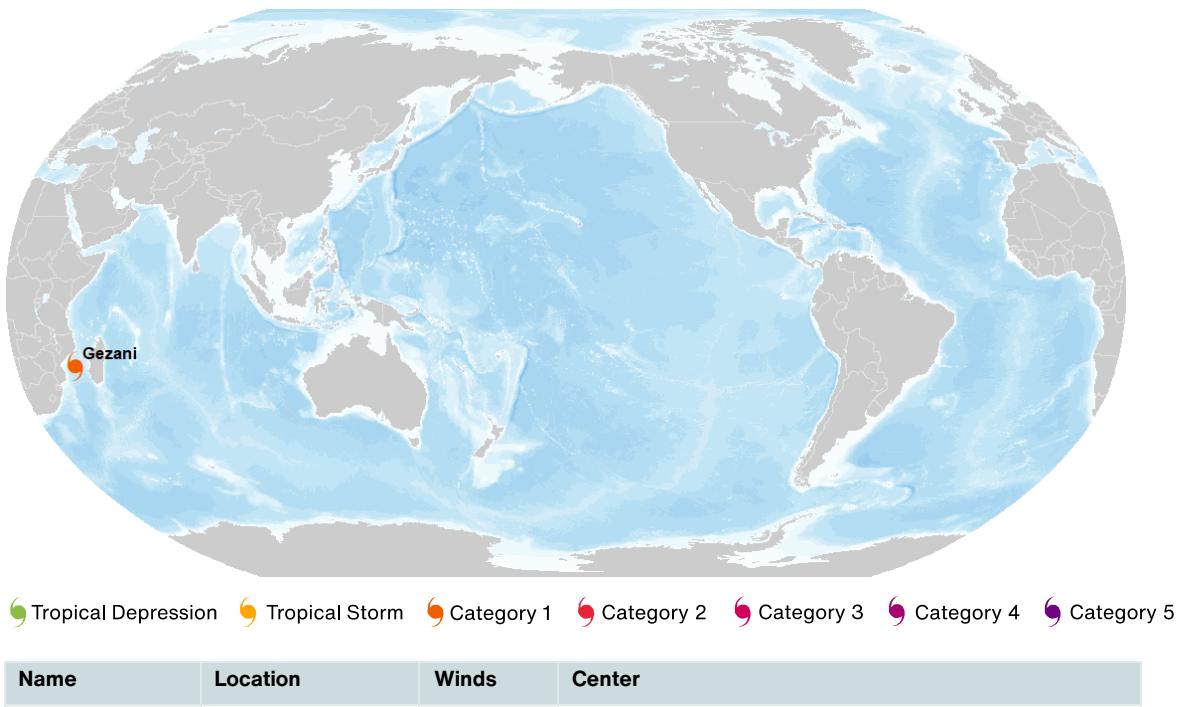
Italy, France: Winter Weather

Snow avalanches in southeastern France and northeastern Italy on February 7-8 caused 11 deaths. This included eight in Italy's Trentino-South Tyrol and Lombardy regions, and three in France's Provence-Alpes-Côte d'Azur and Auvergne-Rhône-Alpes regions.

United States: Winter Weather

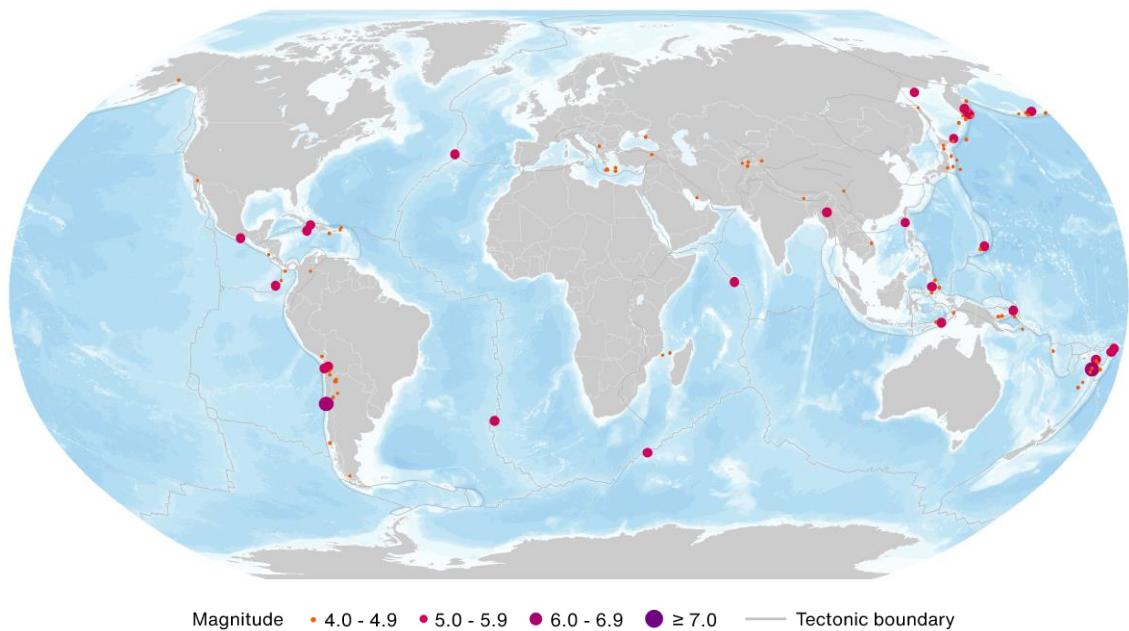
A significant outbreak of cold air affected the northeastern region of the United States on February 7-9. Strong winds produced wind chill temperatures as low as -30 °F (-34 °C) in New York state and Vermont, while more frigid cold air spread into other parts of New England and the Mid-Atlantic. Thousands of residents lost power due to the cold air, including many in the New York City metro area. Frozen and busted pipes were also reported, including 65 such reports in Nassau County (NY) alone resulting in damaged residential and commercial buildings.

Syria: Flooding


On February 7-9, heavy rains triggered destructive flash floods across northwest Syria, particularly in Idlib Governorate and northern Latakia. The flooding inundated 21 displacement sites, resulting in three deaths while affecting roughly 5,300 internally displaced people. 2,000 tents and shelters were damaged or destroyed, homes and shops were flooded, and access roads were cut, disrupting evacuations and aid delivery.

Brazil: Flooding & Landslide

Intense rainfall on February 9-10 resulted in flooding and landslides over parts of Minas Gerais and Rio de Janeiro states. In Minas Gerais, at least 10 people were killed after landslides and structural collapses damaged homes, particularly in the Zona da Mata region. In Rio de Janeiro, the same system caused two injuries, urban flooding, landslides, power disruptions, and road blockages.


Appendices

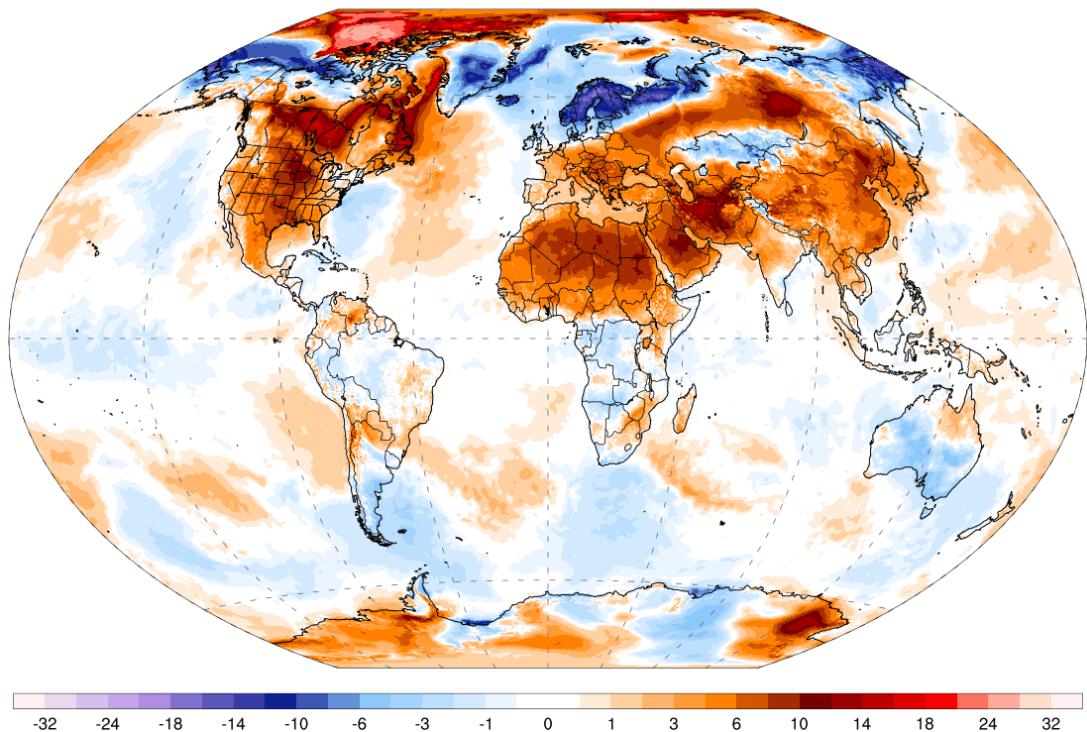
Current Global Tropical Cyclone Activity

Data: National Hurricane Center (NHC), Joint Typhoon Warning Center (JTWC), Central Pacific Hurricane Center (CPHC) | Graphic: Aon Catastrophe Insight

Global Earthquake Activity: M4.0+ Earthquakes on February 6-12

Date (UTC)	Location	Magnitude	Epicenter
2/10/2026	21.04S, 178.33W	6.2	Fiji region
2/12/2026	30.80S, 71.45W	6.2	32 km (20 mi) SW of Ovalle, Chile

Data: U.S. Geological Survey (USGS) | Graphic: Aon Catastrophe Insight

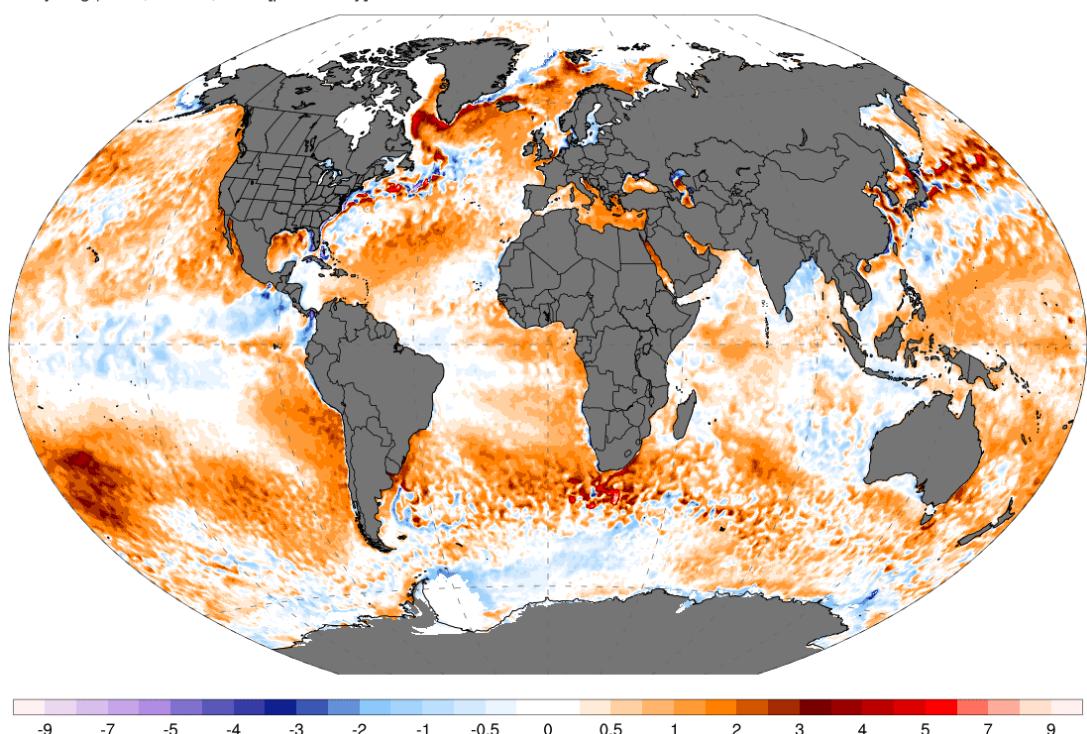

3-Day Global Temperature Anomaly Forecast

GFS 2m T Anomaly ($^{\circ}\text{C}$) [CFSR 1979-2000 baseline]

Days 1-3 Avg | Thu, Feb 12, 2026

ClimateReanalyzer.org

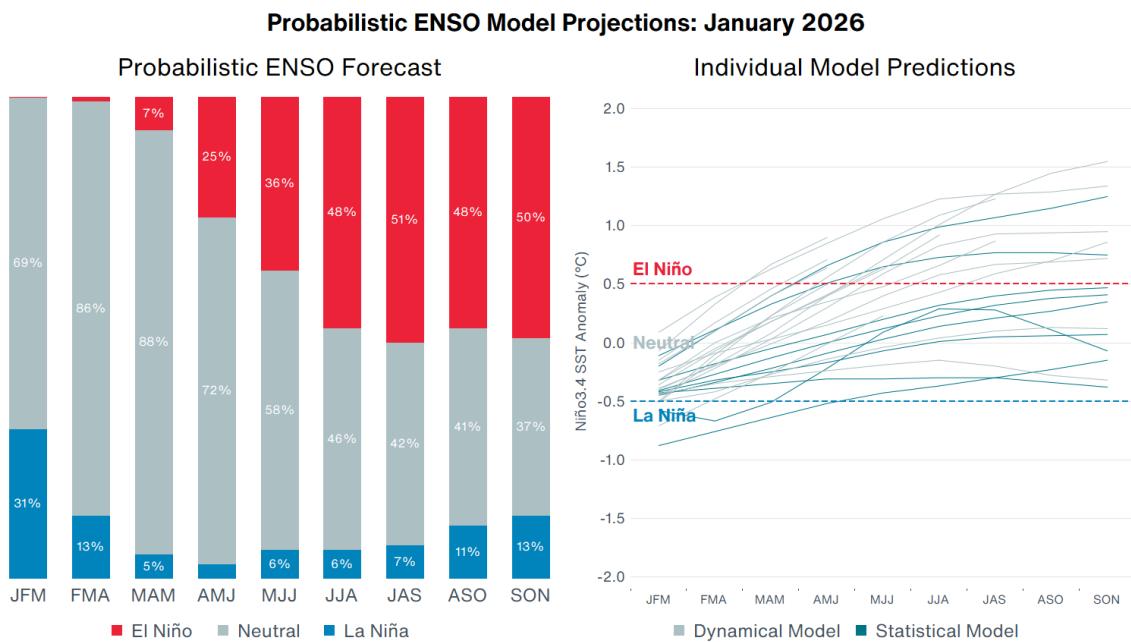
Climate Change Institute | University of Maine


Current Global Sea Surface Temperature Anomaly

OISST SST Anomaly ($^{\circ}\text{C}$) [1971-2000 baseline]

1-day Avg | Wed, Feb 11, 2026 [preliminary]

ClimateReanalyzer.org


Climate Change Institute | University of Maine

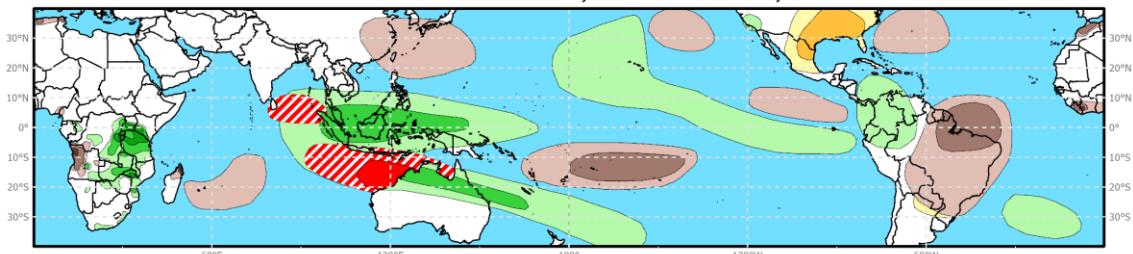
Data & Graphic: Climate Reanalyzer. Climate Change Institute, University of Maine

El Niño-Southern Oscillation (ENSO) Projections

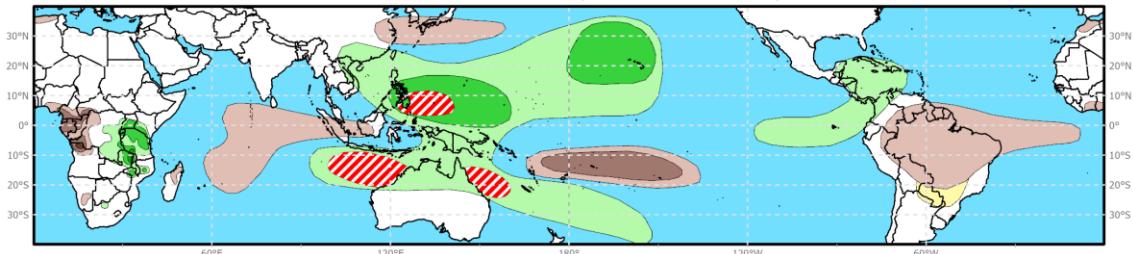
The graphic below shows the projected ENSO phase for upcoming months. These phases (warm El Niño, cool La Niña, and Neutral) are known to shift rainfall patterns and tropical cyclone behavior in many different parts of the world. Read studies by [Lenssen et al. \(2020\)](#) and [Mason and Goddard \(2001\)](#) to find more details about the typical but not guaranteed impacts of the ENSO cycle.

Data: National Oceanic and Atmospheric Administration (NOAA), Columbia University | Graphic: Aon Catastrophe Insight

Global Tropics Hazards Outlook



Global Tropics Hazards Outlook


Climate Prediction Center

Week 2 - Valid: Feb 18, 2026 - Feb 24, 2026

Week 3 - Valid: Feb 25, 2026 - Mar 03, 2026

Tropical Cyclone (TC)
Formation Probability
Tropical Depression (TD)
or greater strength

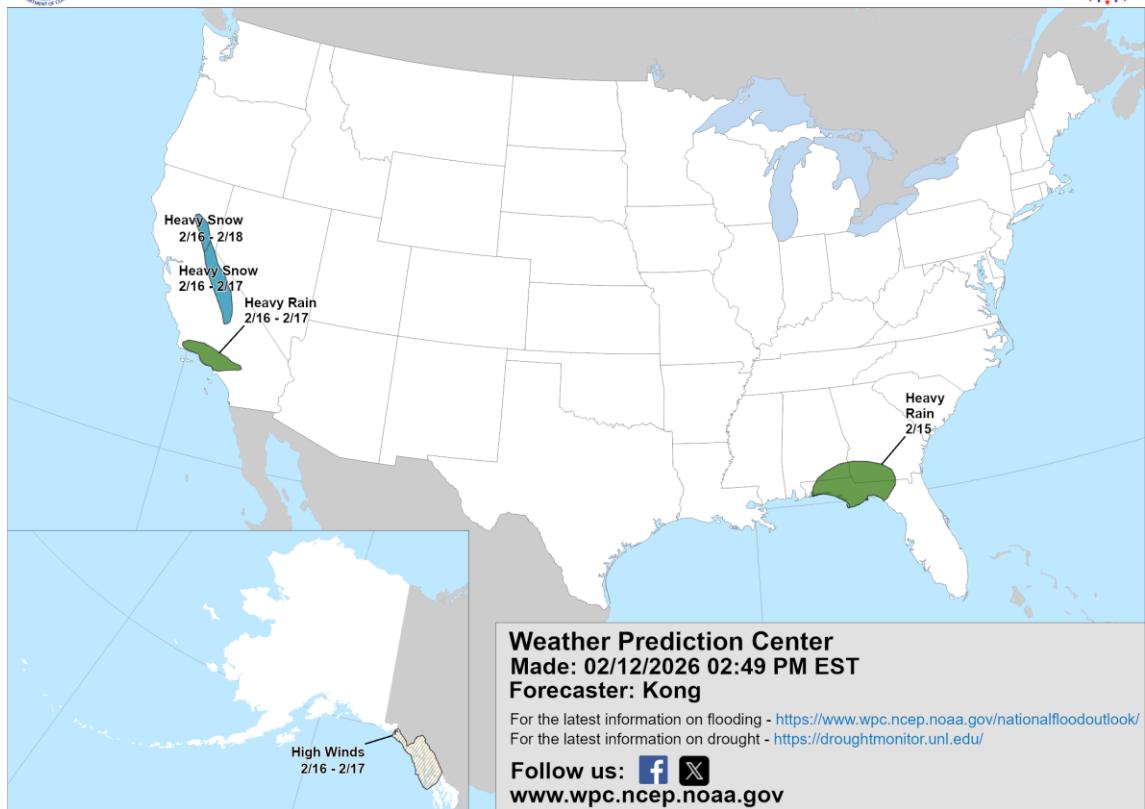
Above-Average
Rainfall Probability
Weekly total rainfall in the
Upper third of the historical range

Below-Average
Rainfall Probability
Weekly total rainfall in the
Lower third of the historical range

Above-Average
Temperatures Probability
7-day mean temperatures in the
Upper third of the historical range

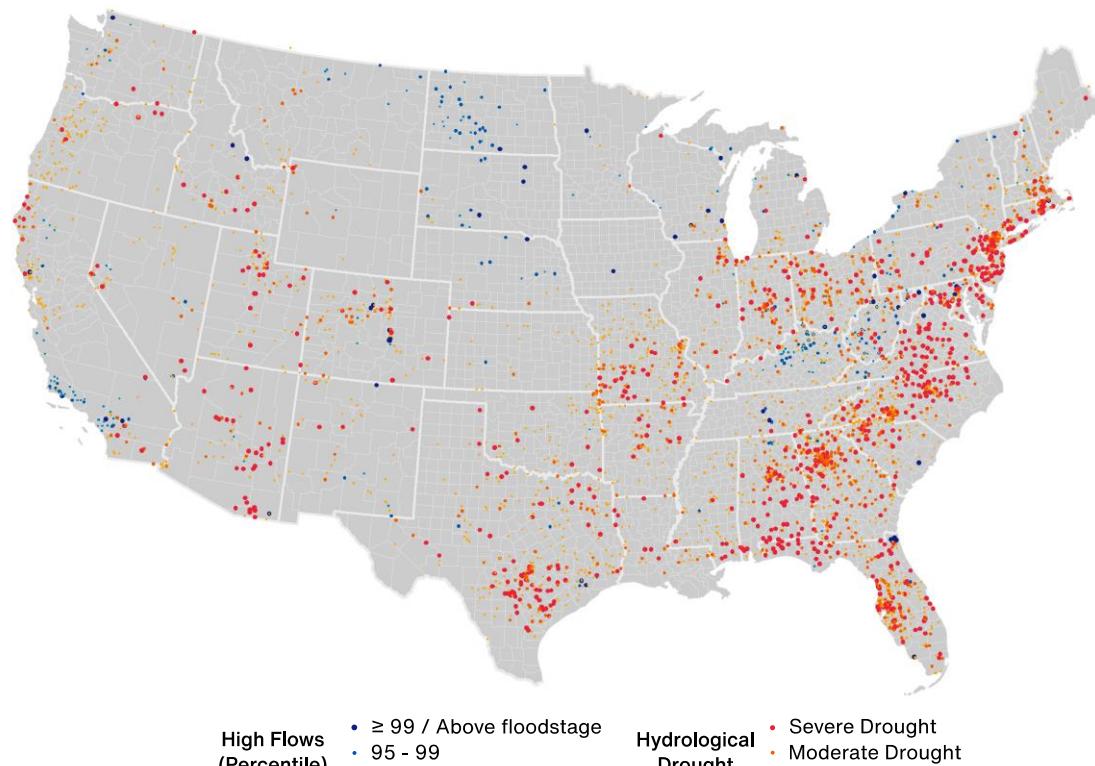
Below-Average
Temperatures Probability
7-day mean temperatures in the
Lower third of the historical range

Issued: 02/10/2026
Forecaster: Long


This product is updated once per week and targets broad scale conditions integrated over a 7-day period for US interests only.
Consult your local responsible forecast agency.

Data: Climate Prediction Center (CPC)

U.S. Hazard Outlook


Day 3-7 U.S. Hazards Outlook Valid: 02/15/2026-02/19/2026

Data: Weather Prediction Center (WPC)

U.S. Current Riverine Flood Risk

A $\geq 99^{\text{th}}$ percentile indicates that estimated streamflow is greater than the 99^{th} percentile for all days of the year. This methodology also applies for the other two categories. A stream in a state of severe drought has 7-day average streamflow of less than or equal to the 5^{th} percentile for this day of the year. Moderate drought indicates that estimated 7-day streamflow is between the 6^{th} and 9^{th} percentile for this day of the year and 'below normal' state is between 10^{th} and 24^{th} percentile.

Data: U.S. Geological Survey (USGS) | Graphic: Aon Catastrophe Insight

References

Portugal, Spain, Morocco: Windstorm & Flooding (Update)

Autoridade Nacional de Emergência e Proteção Civil (ANEPC)
Instituto Português do Mar e da Atmosfera (IPMA)
Spanish Meteorological Institute (AEMET)
Spanish Association of Insurance Entities for Combined Agricultural Insurance (Agroseguro)
Portuguese National Grid Operator (E-REDES)
Portuguese Association of Insurers (APS)
UN OCHA
Impact Forecasting Automated Event Response (AER)
ECMWF
Journal of Leiria
Portugal says direct costs of Storm Kristin exceed \$4.7 billion. *Reuters*
The agricultural and forestry sectors suffered losses of 775 million euros. *RTP*
Kristin's claims exceed four billion, insurers predict compensation of 500 million. *Publico*
The damage from the floods in Cadiz will cost 1.2 billion euros. *Diario de Cadiz*

Global Disasters: In Brief

Joint Typhoon Warning Center (JTWC)
National Office for Risk and Disaster Management of Madagascar (BNGRC)
ABC News
The Watchers News
New State Emergency Service
Homeowners and businesses dealing with frozen pipes and water damage due to the extremely frigid temperatures, *News 12*
Power outages in Brooklyn, Queens impact hundreds during NYC's coldest weather in years, *CBS News*

Additional Report Details

Please note that any financial loss estimate is preliminary and subject to change. These estimates are provided as an initial view of the potential financial impact from a recently completed or ongoing event based on early available assessments. Significant adjustments may inevitably occur.

All financial loss totals are in US dollars (\$) unless noted otherwise.

Structures are defined as any building — including barns, outbuildings, mobile homes, single or multiple family dwellings, and commercial facilities — that is damaged or destroyed by winds, earthquakes, hail, flood, tornadoes, hurricanes, or any other natural-occurring phenomenon.

Claims are defined as the number of claims (which could be a combination of homeowners, commercial, auto, and others) reported by various public and private insurance entities through press releases or various public media outlets.

Damage estimates are obtained from various public media sources, including news websites, publications from insurance companies, financial institution press releases, and official government agencies. Economic loss totals are separate from any available insured loss estimates. An insured loss is the portion of the economic loss covered by public or private insurance entities. In rare instances, specific events may include modeled loss estimates determined from utilizing Impact Forecasting's suite of catastrophe model products.

Fatality estimates as reported by public news media sources and official government agencies.

The information contained herein and the statements expressed are of a general nature and are not intended to address the circumstances of any particular individual or entity. Although we endeavor to provide accurate and timely information and use sources we consider reliable, there can be no guarantee that such information is accurate as of the date it is received or that it will continue to be accurate in the future. No one should act on such information without appropriate professional advice after a thorough examination of the particular situation.

Contacts

Contact the authors:

Michal Lörinc
Head of Catastrophe Insight
michal.lorinc@aon.com

Ondřej Hotový
Catastrophe Analyst
ondrej.hotovy@aon.com

Antonio Elizondo
Senior Scientist
antonio.elizondo@aon.com

Tomáš Čejka
Catastrophe Analyst
tomas.cejka@aon.com

Divyansh Chug
Senior Scientist
divyansh.chug@aon.com

About Aon:

Aon plc (NYSE: AON) exists to shape decisions for the better — to protect and enrich the lives of people around the world. Through actionable analytic insight, globally integrated Risk Capital and Human Capital expertise, and locally relevant solutions, our colleagues provide clients in over 120 countries with the clarity and confidence to make better risk and people decisions that help protect and grow their businesses.

Follow Aon on [LinkedIn](#), [X](#), [Facebook](#) and [Instagram](#). Stay up-to-date by visiting Aon's [newsroom](#) and sign up for news alerts [here](#).

©2026 Aon plc. All rights reserved.