

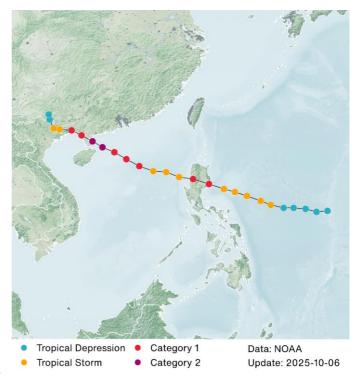
Weekly Cat Report

Review of Global Catastrophe Activity
October 10, 2025

Executive Summary

Event	Affected Region(s)	Fatalities	Economic Loss Estimate (\$)	Page
Typhoon Matmo (Update)	Southeast Asia	31+	100s of millions	3
Flooding & Landslide	Nepal, India	84+	10s of millions	5
Windstorm Amy (Update)	Northern & Western Europe	3	100s of millions	6
Flooding & SCS	Bulgaria, Romania	4	Millions	8
Severe Convective Storm	Bangladesh	0	Millions	8
Typhoon Halong	Japan	1	Millions	8
Tropical Depression 17-E	Mexico	2	Unknown	8
Severe Convective Storm	Indonesia	0	Unknown	8

Explore the supplementary graphics in the <u>Appendices</u>. See <u>Additional Report Details</u> for more about loss estimates and data collecting. Explore more or sign up to receive Cat Reports <u>here</u>.


Southeast Asia: Typhoon Matmo (Update)

Overview

Typhoon Matmo brought record-breaking rainfall and flooding to the northern Philippines, southern China, northern Vietnam, and Thailand. In the Philippines, over 314,000 people were affected with relatively minor infrastructure damage, while in Vietnam and Thailand, severe flooding damaged thousands of homes and caused at least 30 fatalities combined. Overall economic losses are estimated to be in the hundreds of millions of USD, with significant impacts on transportation, agriculture, and local communities.

Meteorological Recap

On September 29, a low-pressure area was identified by the JTWC northnortheast of Yap Island, showing weak convective activity. As the system moved westward, it entered the Philippine Area of Responsibility and was named Paolo by PAGASA on October 1, while the JMA classified it as a tropical depression. The JTWC issued a Tropical Cyclone Formation Alert, and soon after, both agencies upgraded the system to a tropical storm, with the JMA assigning the international name Matmo. By late October 2, Matmo was upgraded to a severe tropical storm as satellite imagery indicated improved organization and deep convective banding. Early on October 3, both JTWC and PAGASA classified Matmo as a typhoon equivalent to a Category-

1 storm on the Saffir-Simpson scale before it made landfall over Dinapigue, Isabela on Luzon Island.

As Matmo passed over northern Luzon, it developed a well-defined central dense overcast and extensive feeder bands. The storm was downgraded to a tropical storm after reemerging over the West Philippine Sea, but was re-upgraded to a typhoon by the JTWC on October 4. It reached peak intensity as a Category 2-equivalent hurricane with winds of 165 kph (103 mph) and a minimum central pressure of 968 mb. Matmo made landfall over Naozhou and Donghai Islands (China) near the Leizhou Peninsula on October 5, and subsequently made another landfall in Fangchenggang, Guangxi Province early on October 6 after crossing the Gulf of Tonkin. Heavy rain and strong winds extended over a large swath of southern China, Vietnam, Laos, and Thailand. In Vietnam alone, daily rainfall exceeded 450 mm (18 inches), surpassing records set in 1986 and 2024. Moreover, the Cau River in northern Vietnam recorded extreme water levels (30 m / 98 ft) that exceeded those observed during Typhoon Yagi (28 m / 92 ft).

Event Details

Philippines

The typhoon had a notable impact on the Philippines, affecting at least 314,000 people and displacing 8,400 others, according to the NDRRMC. Local media reported relatively minor damage, including damage to 30 houses, 6 infrastructure elements, and power outages in 61 areas. Business interruption included a pause in the operation of 17 ports, resulting in numerous passengers and vessels being stranded. One fatality was confirmed by local officials.

China, Vietnam, and Thailand Before impacting Vietnam and Thailand, the outer bands of the typhoon reached Macau, causing minor flooding along the city's harbor area, as well as in Longzhou (China) following the overflow of the Zuo River. Additional, though minor, losses in China were related to business interruption, evidenced by numerous cancelled flights and widespread transportation disruptions. Nonetheless, most of the damage occurred in northern

Flood-hit areas in northern Vietnam. Source: VNA

Vietnam and Thailand, where the typhoon exacerbated ongoing heavy rainfall and flooding. The most severely affected areas in Vietnam included the capital, Hanoi, as well as the provinces of Lang Son, Thai Nguyen, Son La, Cao Bang, and Bac Giang. More than 4,800 houses were reported damaged (with 15,700 affected), 14,600 hectares (36,100 acres) of crops inundated, at least eight people killed, and five reported missing. Over 600 transport routes were damaged by landslides. In Thailand, extreme flooding resulted in at least 22 deaths and the displacement of nearly 370,000 people, along with significant material damage.

Financial Loss Estimate

According to one insurer, the Post and Telecommunication Joint Stock Insurance Corporation in Vietnam, 58 damage cases resulted in losses totalling 290,000 USD for this company alone. In addition, the collapse of the Bac Khe dam reportedly caused around 1.9 million USD in damages. Given the extent and severity of the event, the total economic damage is likely to reach hundreds of millions of USD.

Nepal, India: Flooding & Landslide

Overview

Heavy rainfall from lingering monsoon winds caused severe flooding and landslides across eastern Nepal and Darjeeling, India, between October 3-5. The disaster led to significant loss of life, displacement of thousands, and widespread damage to homes, infrastructure, and tea plantations. Financial losses are estimated to be in the tens of millions of US dollars due to the destruction of property and agricultural exports.

Meteorological Recap

Despite the official end of the monsoon calendar season on September 30, moisture-laden monsoon winds continue to cause heavy localized rainfall across north and northeastern India and Nepal. Several districts in the central-eastern Terai Plains and eastern hills of Nepal faced heavy rainfall,

with weather stations in Rautahat and Ilam recording more than 300 mm (11.8 in) of precipitation per day on October 3-5. The massive volume of water in a short period caused widespread flooding over the flat plains of districts like Rautahat, Bara, and Parsa. Additionally, the intense rains destabilized the steep slopes of nearby hilly districts like Ilam in Nepal and Darjeeling in India, triggering fatal landslides.

Local police aiding rescue efforts at a flooded hospital in Nepal Source: Armed Police Force, Nepal

Event Details

The localized heavy rainfall events on October 3-5 caused significant loss of life and widespread damage. In Nepal, the eastern llam district was the hardest-hit area, where landslides claimed the lives of 37 people and left many others injured, with rescue and relief operations still ongoing. Severe flooding in the Jhapa District displaced more than 25,000 people and submerged nearly 5,500 homes. According to the Nepal Disaster Risk Reduction Portal, a total of 48 people have died across the country, including those in llam, while six remain missing. Additionally, 1,684 houses have been affected and 33 have been damaged. In nearby Darjeeling, India, at least 36 people lost their lives in the disaster and more than 500 homes were destroyed. The heavy rainfall also caused extensive agricultural losses, wiping out 950 hectares (2,350 acres), or 5.5%, of Darjeeling's renowned tea plantations, with an estimated export value loss of over 2.2 million USD.

Financial Loss Estimate

Given the extensive damage to homes, roads and bridges in the region, and a severe hit to the tea export industry, the financial loss from this event is likely to be in the tens of millions of US dollars.

Northern & Western Europe: Windstorm Amy (Update)

Overview

Storm Amy, the first named storm of the 2025–2026 European windstorm season, produced strong winds and localized heavy rainfall across Northern and Western Europe on October 3-4. The event led to meteorological records being broken as well as extensive damage and casualties, with total economic and insured losses estimated to be in the hundreds of millions of EUR.

Meteorological Recap

Windstorm Amy, also known as Detlef, became the first named storm of the 2025-2026 European windstorm season. The meteorological institutes of the UK, Ireland, and Norway issued the orange warnings due to potentially severe wind gusts. On October 3-4, Amy approached Northern and Western Europe and broke some meteorological records. This included a 947.9 mb air pressure reading at Baltasound, Shetland, which became the UK's lowest pressure record for October. Northern Ireland provisionally recorded its strongest October wind gust on record, with a gust of 148 kph (92 mph) at Magilligan. Gusts over 150 kph (93 mph) were also recorded in Ireland, Norway and the UK, including at Tiree, western Scotland which saw a gust of 154 kph (96 mph).

Windstorm Amy approaching the British Isles on October 3
Source: EUMETSAT

Event Details

The storm affected Northern and Western Europe, resulting in material losses, especially in the United Kingdom, Ireland, France, and Norway, where approximately 2,500 damage reports were received. Relatively minor damages occurred in Belgium, Denmark, the Netherlands, Germany, and Sweden. The event prompted thousands of interventions, caused traffic delays and flight cancelations, and led to power outages for around 560,000 individuals, with reported impacts in Ireland (184,000), the UK (158,000), Norway (150,000), Sweden (55,000), and France (13,000). At least three people died - two in

Flooding triggered by Amy in Monaghan, Northern Ireland Source: Monaghan County Council

France and one in Ireland - and several injuries were attributed to falling trees.

Financial Loss Estimate

Restoration efforts and damage assessments are still ongoing, so it is not yet possible to determine the final financial losses caused by storm Amy. Due to the broad range of areas affected by strong wind gusts, total economic losses may reach several hundred million EUR. Insured losses are also anticipated to be substantial.

Global Disasters: In Brief

Bulgaria, Romania: Flooding & Severe Convective Storm

On October 3, eastern Bulgaria experienced severe flooding, resulting in at least four fatalities and the evacuation of hundreds of residents. Substantial damage was reported to infrastructure and property. A state of emergency was declared along sections of the Black Sea coast, where vehicles were swept away and numerous homes remain without electricity. Additionally, on the night of October 7-8, southeastern Romania faced further flash flooding caused by heavy rainfall and thunderstorms. Emergency services reported damage to dozens of vehicles due to fallen trees and significant impacts to infrastructure, particularly in Bucharest, Ilfov, and Constanta counties.

Bangladesh: Severe Convective Storm

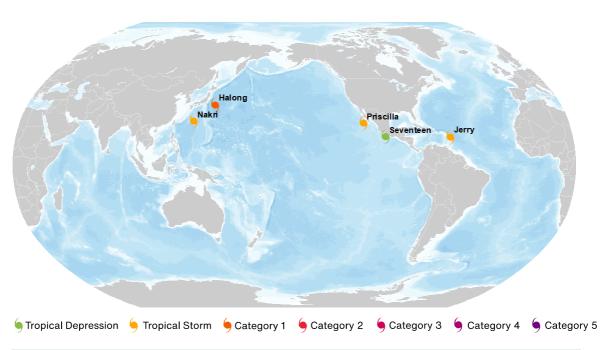
On the morning of October 5, several powerful tornadoes struck districts in the Rangpur Division, Bangladesh, amid heavy rain and strong winds from a nearby low-pressure system. The tornadoes destroyed or damaged about 2,000 houses, injured around 100 people, and uprooted thousands of trees, causing extensive damage to homes, infrastructure, and crops.

Japan: Typhoon Halong

Typhoon Halong reached Category 4 strength on the Saffir-Simpson scale, with winds up to 225 kph (140 mph). Halong struck the Izu Islands in the Tokyo Prefecture, where the city of Hachijo recorded an estimated 120 mm (4.7 in) of rain in just one hour, causing brief flooding and landslide threats, though Tokyo itself was spared. Strong winds and high waves also battered the coast of Honshu as Halong began to weaken and move eastward away from Japan. Direct damage assessments are likely to be covered in the next Weekly Cat Report, although it has been reported that the event claimed at least one fatality.

Mexico: Tropical Depression 17-E

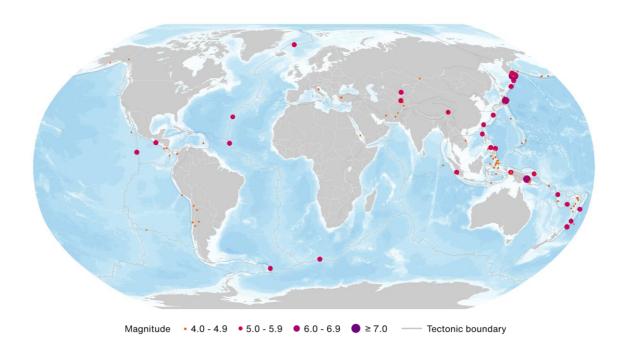
Thunderstorms associated with the development of Tropical Depression 17-E, located in the far eastern Pacific Ocean, have produced heavy rainfall over much of Mexico's Oaxaca State since October 5. Several coastal locations have reported flash flooding and landslides, with local officials confirming at least two fatalities and two injuries.


Indonesia: Severe Convective Storm

Severe thunderstorms on October 5 affected portions of Java Island in southwest Indonesia, resulting in material damage. Most notably, a brief tornado was recorded in the Bandung metro area, with most damage concentrated in Bojongsoang and the Lengkong district. Roughly 67 homes were damaged and one person was injured, according to local officials.

Appendices

Current Global Tropical Cyclone Activity

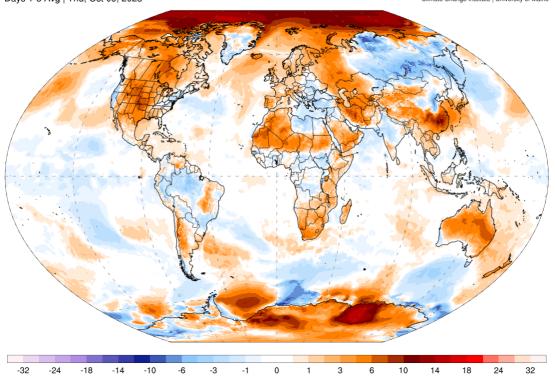


Name	Location	Winds	Center
TD Seventeen	16.2N, 100.8W	35	110 mi (175 km) SW from Chilpancingo, Mexico
TS Priscilla	23.8N, 114.7W	45	265 mi (430 km) W from La Paz, Mexico
TS Jerry	15.9N, 59.1W	65	185 mi (300 km) E from Fort-de-France, French Republic
TS Nakri	24.7N, 134.3E	40	425 mi (685 km) E from Naha, Japan
TY Halong	33.9N, 146.7E	95	415 mi (665 km) E from Tokyo, Japan

Data: National Hurricane Center (NHC), Joint Typhoon Warning Center (JTWC), Central Pacific Hurricane Center (CPHC) | Graphic: Aon Catastrophe Insight

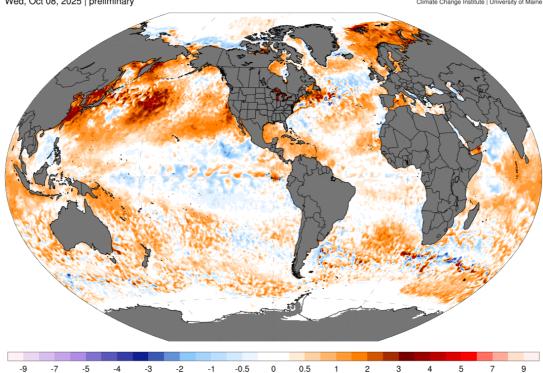
Global Earthquake Activity: M4.0+ Earthquakes on Oct 3-9

Date (UTC)	Location	Magnitude	Epicenter
10/3/2025	51.64N, 160.02E	6.1	18 km (11 mi) SE of Vilyuchinsk, Russia
10/4/2025	37.39N, 141.65E	6	56 km (35 mi) E of Tomioka, Japan
10/7/2025	6.78S, 146.77E	6.6	26 km (16 mi) WSW of Lae, Papua New Guinea
10/9/2025	51.63N, 158.21E	6	11 km (7 mi) E of Ozernovskiy, Russia


Data: U.S. Geological Survey (USGS) | Graphic: Aon Catastrophe Insight

3-Day Global Temperature Anomaly Forecast

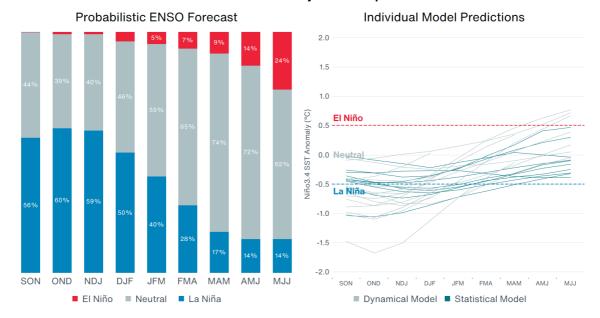
GFS 2m T Anomaly (°C) [CFSR 1979-2000 baseline] Days 1-3 Avg | Thu, Oct 09, 2025


ClimateReanalyzer.org

Current Global Sea Surface Temperature Anomaly

NOAA OISST V2.1 SST Anomaly (°C) [1991-2020 baseline] Wed, Oct 08, 2025 | preliminary

ClimateReanalyzer.org

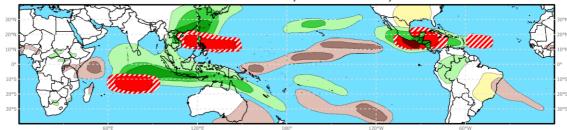

Data & Graphic: Climate Reanalyzer. Climate Change Institute, University of Maine

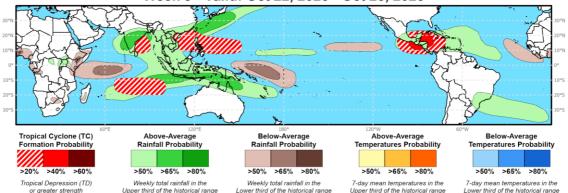
El Niño-Southern Oscillation (ENSO) Projections

The graphic below shows the projected ENSO phase for upcoming months. These phases (warm El Niño, cool La Niña, and Neutral) are known to shift rainfall patterns and tropical cyclone behavior in many different parts of the world. Read studies by <u>Lenssen et al. (2020)</u> and <u>Mason and Goddard (2001)</u> to find more details about the typical but not guaranteed impacts of the ENSO cycle.

Probabilistic ENSO Model Projections: September 2025

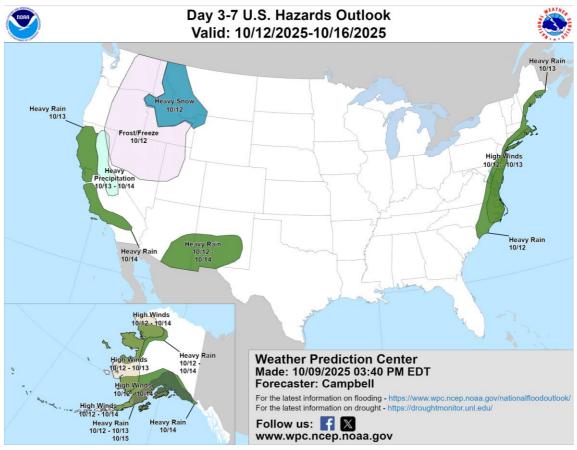
Data: National Oceanic and Atmospheric Administration (NOAA), Columbia University | Graphic: Aon Catastrophe Insight


Global Tropics Hazards Outlook


Global Tropics Hazards Outlook Climate Prediction Center

Week 2 - Valid: Oct 15, 2025 - Oct 21, 2025

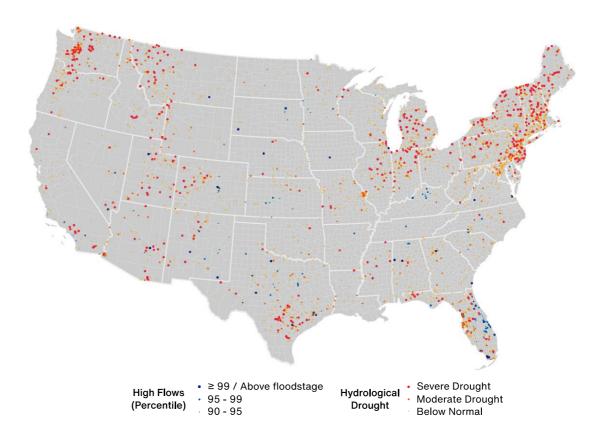
Week 3 - Valid: Oct 22, 2025 - Oct 28, 2025


Issued: 10/07/2025 Forecaster: Barandiaran This product is updated once per week and targets broad scale conditions integrated over a 7-day period for US interests only.

Consult your local responsible forecast agency.

Data: Climate Prediction Center (CPC)

U.S. Hazard Outlook



Data: Weather Prediction Center (WPC)

U.S. Current Riverine Flood Risk

A \geq 99th percentile indicates that estimated streamflow is greater than the 99th percentile for all days of the year. This methodology also applies for the other two categories. A steam in a state of severe drought has 7-day average streamflow of less than or equal to the 5th percentile for this day of the year. Moderate drought indicates that estimated 7-day streamflow is between the 6th and 9th percentile for this day of the year and 'below normal' state is between 10th and 24th percentile.

Data: U.S. Geological Survey (USGS) | Graphic: Aon Catastrophe Insight

References

Southeast Asia: Typhoon Matmo (Update)

Japan Meteorological Agency (JMA)

Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA)

Torrential rains cause deadly flooding in northern Vietnam, AP News

Storm Matmo | Macau lowers signal to No. 3, inner harbor flooded, many tourists say budget missed, *TVB News (translated)*

Post and Telecommunication Insurance Corporation strives to support customers affected by ..., *Vietnam News Agency (translated)*

Typhoon Matmo unleashes extreme rainfall and record river crests in northern Vietnam, *The Watchers*

Nepal, India: Flooding & Landslide

Nepal Disaster Risk Reduction Portal

Floods and Landslides in Nepal Worsen Woes of a Nation in Flux, *The New York Times* Heavy rains kill at least 47 in Nepal, block roads, *Reuters*

Northern & Western Europe: Windstorm Amy (Update)

UK Met Office

Met Éireann

Norwegian Meteorological Institute

Impact Forecasting's Automated Event Response (AER)

Global Disasters: In Brief

European Severe Weather Database (ESWD)

Child under 3 years of age dead, 2 injured and landslides on the coast of Oaxaca, preliminary balance of intense rains, *Pagina3*

BGD: Other - 10-2025 - Bangladesh Tornado 2025, IFRC

Additional Report Details

Please note that any financial loss estimate is preliminary and subject to change. These estimates are provided as an initial view of the potential financial impact from a recently completed or ongoing event based on early available assessments. Significant adjustments may inevitably occur.

All financial loss totals are in US dollars (\$) unless noted otherwise.

Structures are defined as any building — including barns, outbuildings, mobile homes, single or multiple family dwellings, and commercial facilities — that is damaged or destroyed by winds, earthquakes, hail, flood, tornadoes, hurricanes, or any other natural-occurring phenomenon.

Claims are defined as the number of claims (which could be a combination of homeowners, commercial, auto, and others) reported by various public and private insurance entities through press releases or various public media outlets.

Damage estimates are obtained from various public media sources, including news websites, publications from insurance companies, financial institution press releases, and official government agencies. Economic loss totals are separate from any available insured loss estimates. An insured loss is the portion of the economic loss covered by public or private insurance entities. In rare instances, specific events may include modeled loss estimates determined from utilizing Impact Forecasting's suite of catastrophe model products.

Fatality estimates as reported by public news media sources and official government agencies.

The information contained herein and the statements expressed are of a general nature and are not intended to address the circumstances of any particular individual or entity. Although we endeavor to provide accurate and timely information and use sources we consider reliable, there can be no guarantee that such information is accurate as of the date it is received or that it will continue to be accurate in the future. No one should act on such information without appropriate professional advice after a thorough examination of the particular situation.

Contacts

Contact the authors:

Michal Lörinc
Head of Catastrophe Insight
michal.lorinc@aon.com

Ondřej Hotový
Catastrophe Analyst
ondrej.hotovy@aon.com

Antonio Elizondo Senior Scientist antonio.elizondo@aon.com

Tomáš Čejka Catastrophe Analyst tomas.cejka@aon.com

Divyansh Chug
Senior Scientist
divyansh.chug@aon.com

About Aon:

Aon plc (NYSE: AON) exists to shape decisions for the better — to protect and enrich the lives of people around the world. Through actionable analytic insight, globally integrated Risk Capital and Human Capital expertise, and locally relevant solutions, our colleagues provide clients in over 120 countries with the clarity and confidence to make better risk and people decisions that help protect and grow their businesses.

Follow Aon on LinkedIn, X, Facebook and Instagram. Stay up-to-date by visiting Aon's newsroom and sign up for news alerts here.

©2025 Aon plc. All rights reserved.